8 research outputs found

    Crossover between ballistic and diffusive transport: The Quantum Exclusion Process

    Full text link
    We study the evolution of a system of free fermions in one dimension under the simultaneous effects of coherent tunneling and stochastic Markovian noise. We identify a class of noise terms where a hierarchy of decoupled equations for the correlation functions emerges. In the special case of incoherent, nearest-neighbour hopping the equation for the two-point functions is solved explicitly. The Green's function for the particle density is obtained analytically and a timescale is identified where a crossover from ballistic to diffusive behaviour takes place. The result can be interpreted as a competition between the two types of conduction channels where diffusion dominates on large timescales.Comment: 20 pages, 5 figure

    The χ2\chi^2 - divergence and Mixing times of quantum Markov processes

    Get PDF
    We introduce quantum versions of the χ2\chi^2-divergence, provide a detailed analysis of their properties, and apply them in the investigation of mixing times of quantum Markov processes. An approach similar to the one presented in [1-3] for classical Markov chains is taken to bound the trace-distance from the steady state of a quantum processes. A strict spectral bound to the convergence rate can be given for time-discrete as well as for time-continuous quantum Markov processes. Furthermore the contractive behavior of the χ2\chi^2-divergence under the action of a completely positive map is investigated and contrasted to the contraction of the trace norm. In this context we analyse different versions of quantum detailed balance and, finally, give a geometric conductance bound to the convergence rate for unital quantum Markov processes

    Quantum kinetic Ising models

    Full text link
    We introduce a quantum generalization of classical kinetic Ising models, described by a certain class of quantum many body master equations. Similarly to kinetic Ising models with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many body density matrix. The ground states of these Hamiltonians are well described by matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low energy states.Comment: 20 pages, 4 figures, minor improvements, accepted in New Journal of Physic

    Exact solution for a diffusive nonequilibrium steady state of an open quantum chain

    Full text link
    We calculate a nonequilibrium steady state of a quantum XX chain in the presence of dephasing and driving due to baths at chain ends. The obtained state is exact in the limit of weak driving while the expressions for one- and two-point correlations are exact for an arbitrary driving strength. In the steady state the magnetization profile and the spin current display diffusive behavior. Spin-spin correlation function on the other hand has long-range correlations which though decay to zero in either the thermodynamical limit or for equilibrium driving. At zero dephasing a nonequilibrium phase transition occurs from a ballistic transport having short-range correlations to a diffusive transport with long-range correlations.Comment: 5 page

    Can One Trust Quantum Simulators?

    Full text link
    Various fundamental phenomena of strongly-correlated quantum systems such as high-TcT_c superconductivity, the fractional quantum-Hall effect, and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models that are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper [Int. J. Theor. Phys. 21, 467], Richard Feynman suggested that such models might be solved by "simulation" with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a "quantum simulator," would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability, and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question "Can we trust quantum simulators?" is... to some extent.Comment: 20 pages. Minor changes with respect to version 2 (some additional explanations, added references...

    A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains

    Full text link
    We study quantum transport properties of an open Heisenberg XXZ spin 1/2 chain driven by a pair of Lindblad jump operators satisfying a global `microcanonical' constraint, i.e. conserving the total magnetization. We will show that this system has an additional discrete symmetry which is particular to the Liouvillean description of the problem. Such symmetry reduces the dynamics even more than what would be expected in the standard Hilbert space formalism and establishes existence of multiple steady states. Interestingly, numerical simulations of the XXZ model suggest that a pair of distinct non-equilibrium steady states becomes indistinguishable in the thermodynamic limit, and exhibit sub-diffusive spin transport in the easy-axis regime of anisotropy Delta > 1.Comment: 14 pages with 5 pdf figures, revised version, as accepted by New Journal of Physic

    Rank-based model selection for multiple ions quantum tomography

    Get PDF
    The statistical analysis of measurement data has become a key component of many quantum engineering experiments. As standard full state tomography becomes unfeasible for large dimensional quantum systems, one needs to exploit prior information and the "sparsity" properties of the experimental state in order to reduce the dimensionality of the estimation problem. In this paper we propose model selection as a general principle for finding the simplest, or most parsimonious explanation of the data, by fitting different models and choosing the estimator with the best trade-off between likelihood fit and model complexity. We apply two well established model selection methods -- the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) -- to models consising of states of fixed rank and datasets such as are currently produced in multiple ions experiments. We test the performance of AIC and BIC on randomly chosen low rank states of 4 ions, and study the dependence of the selected rank with the number of measurement repetitions for one ion states. We then apply the methods to real data from a 4 ions experiment aimed at creating a Smolin state of rank 4. The two methods indicate that the optimal model for describing the data lies between ranks 6 and 9, and the Pearson χ2\chi^{2} test is applied to validate this conclusion. Additionally we find that the mean square error of the maximum likelihood estimator for pure states is close to that of the optimal over all possible measurements.Comment: 24 pages, 6 figures, 3 table
    corecore